Big data практикум
Учебный план: 38.03.05, 2020, (4.0), Бизнес-информатика
Цели и задачи дисциплины
Цель - познакомиться с основными направлениями анализа данных и получить практический опыт анализа открытых данных. Задачи: 1. Провести обзор источников информации о Big Data и Data Mining. 2. Применять методы обработки и анализа данных, в том числе Big Data, в решении прикладных задач
Краткое содержание дисциплины
Введение в анализ больших данных. Обзор источников информации о Big Data и Data Mining. Технологии хранения и обработки больших данных. Технологии интеллектуального анализа данных: ассоциативные правила, кластеризация, регрессия, классификация, искусственные нейронные сети, дерево решений, генетические алгоритмы. Статистические методы анализа данных. Программные средства анализа Big Data. Сбор и хранение больших данных. Применение методы обработки и анализа данных в решении прикладных задач
Компетенции обучающегося, формируемые в результате освоения дисциплины
Выпускник должен обладать:
- ОПК-1 способностью решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности
- ПК-18 способность использовать соответствующий математический аппарат и инструментальные средства для обработки, анализа и систематизации информации по теме исследования